Geometry Challenge!

Find the proportion of each shape shaded. Use a separate A4 piece of paper for your proof of each question, and add these to your folder.
a

b

d

An equilateral triangle inscribed in a circle.

h

Two circles of equal radius inscribed in a rectangle, overlapping such that the circumference of one circle passes through the centre of the other.
i

A circle in the gap formed by a larger circle inscribed in a square.
j

A circle inscribed in a quarter circle.

A circle inscribed in a regular hexagon inscribed in a larger circle.
k

Three circles inscribed in a triangle.

A circle in the gap formed
by a larger circle inscribed
in an equilateral triangle.

For this last one, just work out the radius of the small circle when the large circle has radius 1 . This one is tough!

ANSWERS

(I'm purposely not providing full solutions here: only the answers!)
a. $\frac{2+\pi}{2 \pi}$
b. $\frac{1}{4}-\frac{\pi}{16}$
C. $\frac{\pi}{3 \sqrt{3}}=\frac{\pi \sqrt{3}}{9}$
d. $\frac{3 \sqrt{3}}{4 \pi}$
e. $\frac{\pi}{2}-1$
f. $\frac{\pi}{3+2 \sqrt{2}}$
g. $\frac{1}{2}$
h. $\frac{\pi}{9}-\frac{\sqrt{3}}{12}$
i. $\frac{\pi(\sqrt{2}-1)^{2}}{1(1+. / 7)^{2}}$
circle be 1 , height of triangle is $3+\sqrt{3}$ and base is $2(1+\sqrt{3})$.
Thus area of triangle is $6+4 \sqrt{3}$ and fraction shaded is $\frac{3 \pi}{6+4 \sqrt{3}}$.
I. $\frac{3}{4}$
m. $\frac{\pi}{27 \sqrt{3}}=\frac{\pi \sqrt{3}}{81}$
n. $\frac{\pi}{3}-\sqrt{3}+1$
\otimes The radius of the shaded circle is $\frac{1}{(\sqrt{3}+1)^{2}}=\frac{1}{4+2 \sqrt{3}}$. This would make the proportion of the triangle shaded $\frac{\pi}{12 \sqrt{3}+18}$

